More Visible Effects of the Hidden Sector

arXiv:0709.0775 [hep-ph] (with H. Murayama and Y. Nomura)

David Poland
UC Berkeley

Outline

- Why supersymmetry?
- Meta-stable SUSY breaking
- Mediation => Higher dimensional operators
- Hidden sector dynamics
- Conformal hidden sectors
- Application to gauge mediation
 - Possible solution to μ (Bμ) problem!
- Things to do

Why Supersymmetry?

- The Standard Model suffers from a huge fine-tuning problem...
 - Quantum corrections to the Higgs mass parameter are much bigger than its value (set by weak scale)

$$-\frac{h}{16\pi^2}\Lambda^2$$

- Not a problem for other SM particles
 - Fermion masses protected by chiral symmetry
 - Gauge bosons protected by gauge symmetry
- Maybe we need a new symmetry!

Why Supersymmetry?

Loops of superpartners cancel this divergence!

Gauge coupling unification

There's just one problem...

- We haven't seen any superpartners in nature!
 - Supersymmetry must be broken
 - Scale of supersymmetry breaking should be close to weak scale to solve fine tuning problem... (LHC!)
 - This scenario is actually very exciting
 - The pattern of soft masses may tell us something about physics at very high scales!
 - Mediation mechanism
 - Grand Unification
 - SUSY breaking sector

How is SUSY Broken?

- Old way of thinking
 - Look for a theory with a SUSY breaking vacuum
 - Constrained by Witten index
 - Generic superpotentials require exact U(1)_R
 symmetry [Nelson, Seiberg '93]
 - Must be spontaneously broken to generate gaugino masses
 - -Leads to massless R-axion!
 - Can try explicit U(1)_R breaking and a special, non-generic superpotential...
 - Life is difficult!

How is SUSY Broken?

- New way of thinking
 - We live in a meta-stable vacuum! [Intriligator, Seiberg, Shih, '06]
 - Can simply write down generic superpotential with broken U(1)_R symmetry, vector-like matter, etc.
 - SUSY QCD with gives a simple example:
 - N_f vector-like quarks with $N_c < N_f < 3/2 N_c$
 - Include mass terms $W = m_{ij} \overline{Q}^i Q^j$
 - Magnetic dual description: SU($N_f N_c$) theory $W_{mag} = m_{ij} \Lambda S^{ij} + S^{ij} \bar{q}_i q_j + \text{non-perturbative}$
 - SUSY broken at tree level because m_{ij} and $\bar{q}_i q_j$ have different rank: $F_s \neq 0$

The Hidden Sector

- Still need to communicate (meta-stable) SUSY breaking in a flavor blind way
 - Anomaly Mediation
 - Gauge Mediation
 - Gaugino Mediation
- Integrating out gauge/gravity messengers generates higher dimensional operators...

Higher Dimensional Operators

- Integrate out messengers...
 - Quadratic Operators:

$$\langle S \rangle = F_S \theta^2$$

$$\int d^4\theta \frac{S^{\dagger}S}{M^2} \phi_I^{\dagger} \phi_I$$
 Soft masses m_I^2

$$\int d^4\theta \frac{S^{\dagger}S}{M^2} H_u H_d$$

$$B\mu - \text{term}$$

Higher Dimensional Operators

- Integrate out messengers...
 - Linear Operators:

$$\langle S \rangle = F_S \theta^2$$

$$\int d^2\theta \frac{S}{M} W^{\alpha a} W^a_{\alpha}$$

Gaugino masses M_a

$$\int d^4\theta \frac{S^{\dagger}}{M} \phi_I^{\dagger} \phi_I$$

 $A-\text{terms } a_{IJK}$ Soft masses m_I^2 $B\mu$ – term

$$\int d^4\theta \frac{S^{\dagger}}{M} H_u H_d$$

A Simple Example...

SUSY QCD with Gauge Mediation [Murayama, Nomura, '06]

$$W = -m_i \delta_{ij} \overline{Q}^i Q^j + \frac{\lambda_{ij}}{M_{Pl}} \overline{Q}^i Q^j \overline{f} f + M \overline{f} f$$
Seiberg Dual (Nc < Nf < 3/2 Nc)
$$W_{mag} = -\mu_i^2 S^{ii} + \lambda'_{ij} S^{ij} \overline{f} f + M \overline{f} f + a S^{ij} \overline{q}_i q_j$$
Integrate out messengers

$$L \sim \int d^{2}\theta \left(-\frac{1}{2} \frac{\lambda'_{ij}}{(4\pi)^{2}M} \right) S^{ij} W_{\alpha}^{a} W^{a\alpha} + h.c.$$

$$+ \int d^{4}\theta \left(\frac{-2C_{I}^{a} g_{a}^{4} \lambda'^{\dagger ij} \lambda'_{kl}}{(4\pi)^{4}M^{2}} \right) S_{ij}^{\dagger} S^{kl} \phi_{I}^{\dagger} \phi_{I}$$

A few remarks

- This scheme is actually very generic!
 - From UV (string) theory, expect to have extra gauge groups and extra vector-like matter
 - Write down all allowed operators, and it is easy to get meta-stable SUSY breaking + gauge mediation!
 - Only need to satisfy certain inequalities

- We have generated the soft parameter operators at the messenger scale
 - Still need to run down to low energies!

The "Standard" Approach

Calculate RGE running from visible sector interactions:

- Run down to low energies
- Easily reversible...measure low scale soft parameters and run up to determine mediation mechanism
- But this isn't the complete story...

Hidden Sector Dynamics!

[Dine, et al, '04; Schmaltz, Cohen, Roy, '06]

• Hidden sector interactions like $W \sim S \, \overline{q} \, q$ also renormalize these operators:

- One way to proceed:
 - Simply calculate the perturbative effects in any given model (e.g., SQCD+Gauge Mediation)
 - Perturbative hidden sectors can lead to few % deviations from standard spectra...

Conformal Hidden Sectors

- What if the hidden sector is approximately conformal?
 - Effects can be much more dramatic!
 - $_{\rm c}$ Simple example: SUSY QCD with 3/2 N $_{\rm c}$ < N $_{\rm c}$ < 3 N $_{\rm c}$
 - Some flavors decouple at intermediate scale, and SUSY breaking happens as before
 - Partial results in 4D conformal sequestering...
 [Luty, Sundrum '01; Schmaltz, Sundrum '06]
 - However, situation with singlets and other mediation mechanisms had not been properly discussed
 - How are the linear and quadratic operators affected by conformal hidden sector dynamics?

Conformal Hidden Sectors

Linear Operators

- Renormalized only through wavefunction renormalization
 - Determined by superconformal R-charge
 - Unitarity requires R_s > 2/3

$$Z_S(\mu) = \left(\frac{\Lambda}{\mu}\right)^{3R_S-2} > 1$$

$$\int d^2\theta \, \frac{S}{M} W^{\alpha} W_{\alpha}$$

$$\int d^2\theta \frac{S}{M} W^{\alpha} W_{\alpha} \qquad \qquad \int d^2\theta Z_S^{-1/2}(\mu) \frac{S}{M} W^{\alpha} W_{\alpha}$$

Same suppression factor for µ and A-term operators...

Quadratic Operators

Also receive 1PI corrections:

Not possible in general to calculate, but expect:

$$\begin{array}{|c|c|c|c|c|c|}\hline K_I - L_I^{\dagger} L_I & \hline & & \\ \hline & \begin{pmatrix} \frac{\mu}{\Lambda} \end{pmatrix}^{\alpha_S} Z_S^{-1}(\mu) (K_I - L_I^{\dagger} L_I) & \hline \\ \end{array}$$

- May be more or less suppressed than linear operators
 - Depends on sign of α_S
- This is the combination that enters the soft masses

Quadratic Operators

 The Higgs mass parameters also get renormalized through the mu-term operator:

- Combination that contributes to $m_H^2 + \mu^2$ is suppressed
- Similarly, operator contributing to $B\mu$ is suppressed
- Can also mix with other *quadratic* operators like $q^{\dagger}q \phi^{\dagger}\phi$
 - Suppression controlled by largest eigenvalue of mixing $\hat{\alpha_S}$

Gravitino Mass

 Set by F-term VEVs in hidden sector after canceling cosmological constant:

$$m_{3/2} \sim \frac{F_S}{M_{Pl}}$$

This should be compared to:

$$M_{linear} \sim Z_S^{-1/2}(\mu) \frac{F_S}{M}$$

$$M_{quadratic} \sim \left(\frac{\mu}{\Lambda}\right)^{\frac{\hat{\alpha}_S}{2}} Z_S^{-1/2}(\mu) \frac{F_S}{M}$$

 Soft parameters are all being suppressed relative to the gravitino mass!

Three Extreme Cases

- If the effects are strong, we might be led to one of three extreme situations:
 - Case 1: Linear Operator Dominance $(\hat{\alpha}_S > 0)$

$$\int d^{2}\theta Z_{S}^{-1/2} \frac{S}{M} W^{\alpha} W_{\alpha} \left| \int d^{4}\theta Z_{S}^{-1/2} \frac{S^{\dagger}}{M} \phi_{I}^{\dagger} \phi_{I} \right| \int d^{4}\theta Z_{S}^{-1/2} \frac{S^{\dagger}}{M} H_{u} H_{d}$$

$$\int d^4\theta Z_S^{-1/2} \frac{S^{\dagger}}{M} \phi_I^{\dagger} \phi_I$$

$$\int d^4\theta Z_S^{-1/2} \frac{S^{\dagger}}{M} H_u H_d$$

$$m_{I}^{2} = B = 0$$

$$m_{H_{u}}^{2} = m_{H_{d}}^{2} = -\mu^{2}$$

$$a_{IJK} = y_{IJK} (A_{I} + A_{J} + A_{K})$$

$$M_{a} \approx \mu \approx A_{I}$$

Three Extreme Cases

- If the effects are strong, we might be led to one of three extreme situations:
 - Case 2: Quadratic Operator Dominance $(\hat{\alpha}_{s} < 0)$

$$\int d^4\theta \left(\frac{\mu}{\Lambda}\right)^{\hat{\alpha}_S} Z_S^{-1}(\mu) \frac{S^{\dagger} S}{M^2} \phi_I^{\dagger} \phi_I$$

$$\left|\int d^4\theta \left(\frac{\mu}{\Lambda}\right)^{\hat{\alpha}_S} Z_S^{-1}(\mu) \frac{S^{\dagger}S}{M^2} \phi_I^{\dagger} \phi_I \right| \left| \int d^4\theta \left(\frac{\mu}{\Lambda}\right)^{\hat{\alpha}_S} Z_S^{-1}(\mu) \frac{S^{\dagger}S}{M^2} H_u H_d \right|$$

$$m_I^2$$
, $B \mu \gg M_a^2$, μ^2 , a_{IJK}^2

Led to a split spectrum...

Three Extreme Cases

- If the effects are strong, we might be led to one of three extreme situations:
 - Case 3: Anomaly Mediation Dominance

$$\frac{m_{3/2}}{16\pi^2} \gg M_{linear}$$
, $M_{quadratic}$

- Happens when both kinds of operators are suppressed enough relative to the gravitino mass
- Conformal sequestering can work with singlets!
- Solves flavor, but still have to worry about tachyonic sleptons, too large Bµ, etc...

Gauge Mediation

What happens when we apply this to gauge mediation?

- Case 1
 - Can solve the μ (Bμ) problem!
 - Resembles low-scale gaugino mediation (with A-terms and funny Higgs sector)
- Case 2
 - Spectrum with fractional number of messengers

μ (Βμ) Problem in Gauge Mediation

When we try to generate μ at one loop...

(e.g.,
$$W = y f f H_u + \overline{y} \overline{f} \overline{f} H_d$$
)

We generically also generate Bµ at one loop!

$$H_{u}$$
 H_{d} $\sim \frac{y \overline{y} |\lambda|^{2}}{16 \pi^{2} M^{2}} S^{\dagger} S H_{u} H_{d}$

A Possible Solution... (Case 1)

[See also: Roy, Schmaltz '07]

- Hidden sector dynamics suppresses Bμ relative to μ!
 - Scalar masses disappear...
 - Scalar masses disappear...
 Gaugino masses still same form $M_a \sim \frac{g_a^2}{16\pi^2} (\frac{F}{M})_{cff}$
 - Higgs A-terms come from dynamics generating µ
- Spectrum at intermediate scale looks like:

$$m_{Q_{I},U_{I},D_{I},L_{I},E_{I}}^{2}=0$$

$$(a_{u})_{IJ}=(y_{u})_{IJ}A_{H_{u}}, \quad (a_{d})_{IJ}=(y_{d})_{IJ}A_{H_{d}}, \quad (a_{e})_{IJ}=(y_{e})_{IJ}A_{H_{d}}$$

$$m_{H_{u}}^{2}=-\mu^{2}, \quad m_{H_{d}}^{2}=-\mu^{2}, \quad B=0$$

$$M_{a}\approx \mu\approx A_{H_{u}}\approx A_{H_{d}}$$

Split Gauge Mediation (Case 2)

 Gaugino masses suppressed relative to scalars, but form stays fixed:

$$M_{a} = N_{mess} \frac{g_{a}^{2}}{16\pi^{2}} \left(\frac{F}{M}\right)_{eff}$$

$$m_{I}^{2} = 2 N_{mess} C_{I}^{a} \left(\frac{g_{a}^{2}}{16\pi^{2}}\right)^{2} \left|\left(\frac{F}{M}\right)_{eff}\right|^{2}$$

- Looks like N_{mess} is fractional!
- Requires fine-tuning in Higgs sector, but may still be interesting if splitting is not so large...

Things to do...

- Study the sequestered spectrum!
 - Very predictive
 - Naively looks great from tuning perspective
 - However, a bit tricky to make EWSB work
- Find a candidate hidden sector with a calculable limit
 - Unfortunately SUSY QCD in Banks-Zaks limit does not give correct signs for anomalous dimensions...
- Dark Matter
 - Non-gravitino LSP in gauge mediation
- Study inverse problem
 - e.g., how to distinguish between hidden sector dynamics and complicated messenger sector?